
READY TO DESIGN A GREENWAY?

DESIGN BEST PRACTICES + FIELD STUDY

INTRODUCTIONS

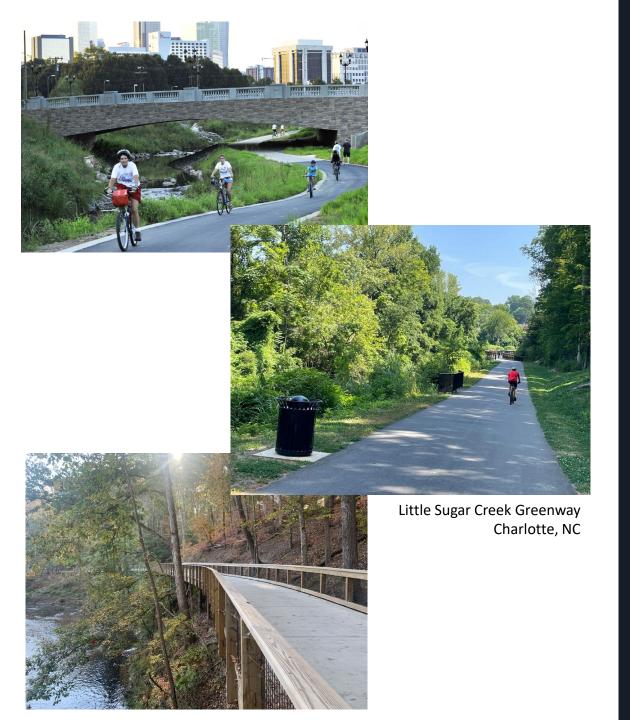
IONA THOMAS AICP
vice president, strategy + public
client development

NICK LOWE RLA senior landscape architect

JIMMY PRESTWOOD PE bicycle + pedestrian engineer

WILL WASHAM transportation planner

OVERVIEW + DISCUSSION TOPICS


- Double Session Schedule
 - Classroom (9:40 am 10:40 am)
 - Break (10:40 am 11:00 am)
 - Site Visit (11:00 am noon)
- > Classroom Discussion Topics
 - Overview of Design Phase
 - Design Criteria + Considerations
- Site Visit
 - Real-world Example + Application

Liberty Park - Mooresville, NC

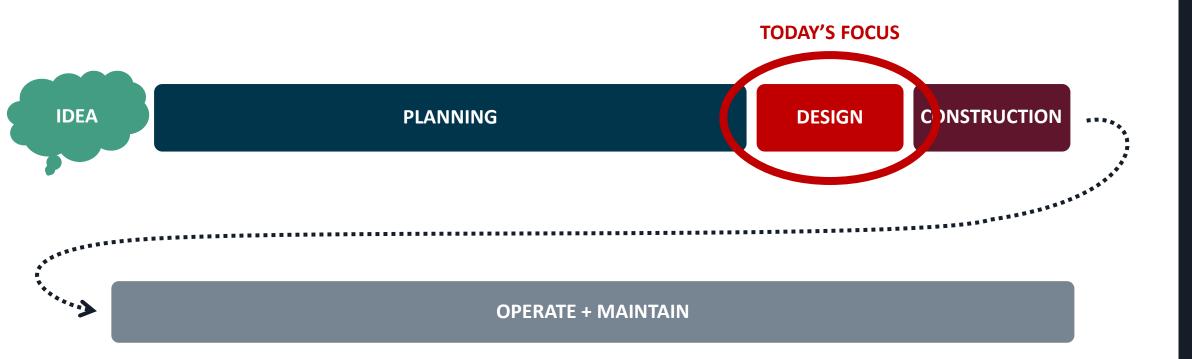
WHAT IS A GREENWAY TRAIL?

INTERACTIVE QUESTIONS

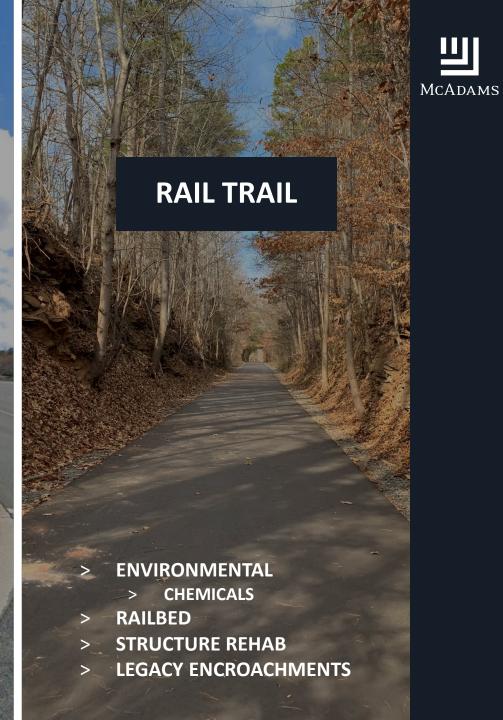
- > Who has planned a greenway?
- > Who has designed a greenway?
- > Who has constructed or maintained a greenway?
- Who has reviewed a greenway or been asked technical questions about one?

IT TAKES A VILLAGE

Connectivity
Land-use
Big Picture!


User-experience Placemaking

PLANNING ENGINEERING LANDSCAPE ARCHITECTURE


Design
Permitting
Cost Estimating
Utility Coordination

LIFE CYCLE

KEY DECISIONS BEFORE OR EARLY ON IN DESIGN PROCESS

HAS A FEASIBILITY STUDY BEEN PERFORMED?

FUNDING

- > If federal, additional set of requirements
- > Time to complete by?

REAL ESTATE

- > Already have property along corridor?
- Connections into adjacent neighborhoods may require additional negotiations

BEGIN / END POINTS

- > Avoid isolation and lack of connectivity
- > Consider future plans

COORDINATION
W/OTHER
INFRASTRUCTURE
PROJECTS

Park, Sewer, Roadway, Water,
 Stream Restoration, Bridge replacement, etc.

TRAIL WIDTH

- Can be affected by funding source
- > Additional width cost
- > Updated standards from past plan?

LEVEL OF COMMUNITY ENGAGEMENT

- Has there been any from past plan? Any expected backlash?
- Deeper into design it pushes...becomes more informational

TYPICAL DESIGN EVOLUTION

BEGINNING · · · · · · BIDDING

PRELIMINARY DESIGN (25%)

- > Typical sections
- Horizontal +Vertical alignment
- > Construction limits
- > Structure Locations/Siting

SCHEMATIC DESIGN (50%)

- > Drainage Design
- > FloodplainModeling
- > Construction Access Plans
- > Cross Sections
- > Preliminary
 Structure Plans

DESIGN DEVELOPMENT (75%)

- > Pavement
 Markings + Signage
- > Traffic Control
- > Erosion Control
- > Utilities (By Others)
- > Final Structure Plans
- > ROW/Easements

CONSTRUCTION DOCS (100%)

- > Specifications
- Signed & SealedPlans
- > Final Cost Estimate/Bid tabs

FIELD SURVEY

ENVIRONMENTAL INVESTIGATION

PUBLIC ENGAGEMENT

GEOTECHNICAL INVESTIGATION

REAL ESTATE ACQUISITION COMPLETE

PERMITTING COMPLETE

TYPICAL DESIGN EVOLUTION

BEGINNING · · · · · · · BIDDING

PRELIMINARY DESIGN (25%)

- > Typical sections
- > Horizontal + Vertical alignment
- > Construction limits
- > Structure Locations/Siting

SCHEMATIC DESIGN (50%)

- Drainage Design
- > Floodplain Modeling
- > <u>Construction</u>
 - **Access Plans**
- Cross Sections
- > Preliminary Structure Plans

DESIGN DEVELOPMENT (75%)

- > Pavement
 Markings + Signage
- > Traffic Control
- > Erosion Control
- > Utilities (By Others)
- > Final Structure
 Plans
- > ROW/Easements

CONSTRUCTION DOCS (100%)

- > **Specifications**
- > Signed & Sealed Plans
- Final Cost
 Estimate/Bid
 tabs

FIELD SURVEY

ENVIRONMENTAL INVESTIGATION

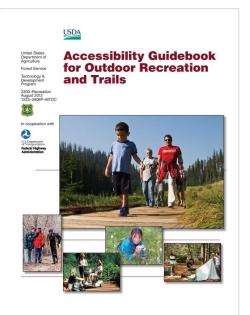
PUBLIC ENGAGEMENT

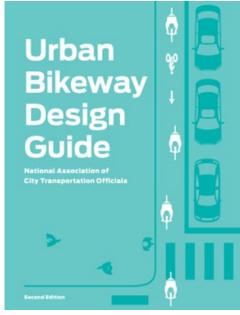
GEOTECHNICAL INVESTIGATION

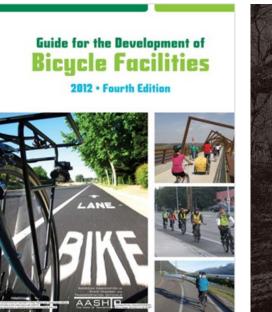
REAL ESTATE ACQUISITION COMPLETE

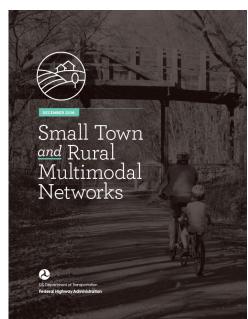
PERMITTING COMPLETE

CRITICAL COORDINATION ITEMS/POTENTIAL SCHEDULE PUSHERS








DESIGN RESOURCES

- AASHTO Guide for the Development of Bicycle Facilities (2012)
 - Ch. 5, Design of Shared Use Paths
- FHWA Small Town and Rural
 Multimodal Networks (2016)
- US Forest Service Accessibility
 Guidebook for Outdoor Recreation and
 Trails (2012)
- NACTO Urban Bikeway Design Guide (2011 w/ new release in 2024)
- US Access Board Public Right-of-Way Accessibility Guidelines (Final Rule Published Aug 2023)

DESIGN CRITERIA

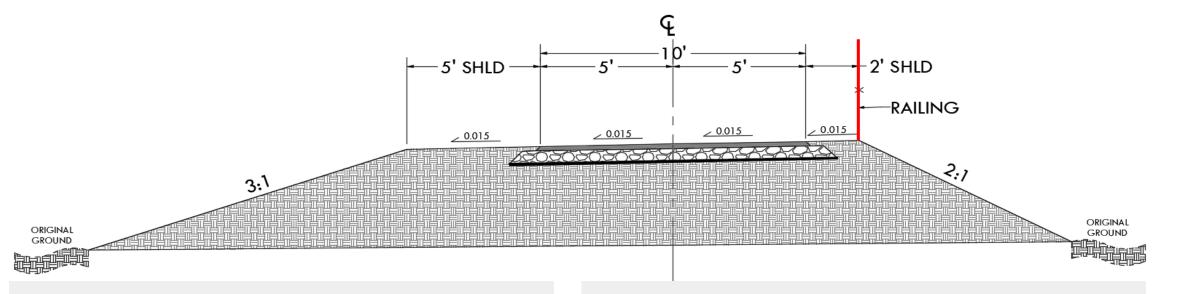
WIDTH + CLEARANCE

DEPENDENT ON CONTEXT, VOLUME, AND USER MIX

WIDTH

> 10' for 2-way traffic (8' absolute min. in constrained areas)

CLEARANCE


- Horizontal (2' min. with exceptions)
 - Shy distance against vertical elements (retaining walls, railing/fencing, curb)
- > Vertical (10' recommended, 8' min.)
 - Roadway underpasses, Tunnels/Culverts, Tree limbs, aerial utilities

DESIGN CRITERIA

CROSS-SECTIONAL FEATURES

CROSS SLOPE

- > 2.0% max (1.5% recommended)
- > When transitioning, 10' per 1% change

SIDE SLOPES

- 3:1 recommended (stable + traversable)
- > 2:1 in constrained cases

SHOULDERS

> 2' min. (5' recommended)

RAILING

- > 42" min. height (48" recommended)
- > If 5' shoulder provided, not required
- > If less than 5' shoulder, required when:
 - 3:1 slope + 6' dropoff
 - 2:1 slope + 4' dropoff

GRADES + ACCESSIBILITY

ADA

PROWAG

- 5.0% max. (4.5% recommended)
- > 8.33% for 30', 2% for 5'

 Match but do not exceed adjacent roadway grade

RECREATIONAL TRAIL ACCESSIBILITY GUIDELINES

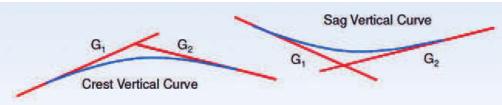
- No more than 30% of overall length may exceed 8.33%
- > Grades shall never exceed 12%

Table 2—Maximum Running Slope and Segment Length						
Running Slope of Trail Segment		Maximum Length of Segment				
Steeper Than	But Not Steeper Than					
1:20 (5%)	1:12 (8.33%)	200 feet				
1:12 (8.33%)	1:10 (10%)	30 feet				
1:10 (10%)	1:8 (12%)	10 feet				

DESIGN CRITERIA

HORIZONTAL + VERTICAL GEOMETRY

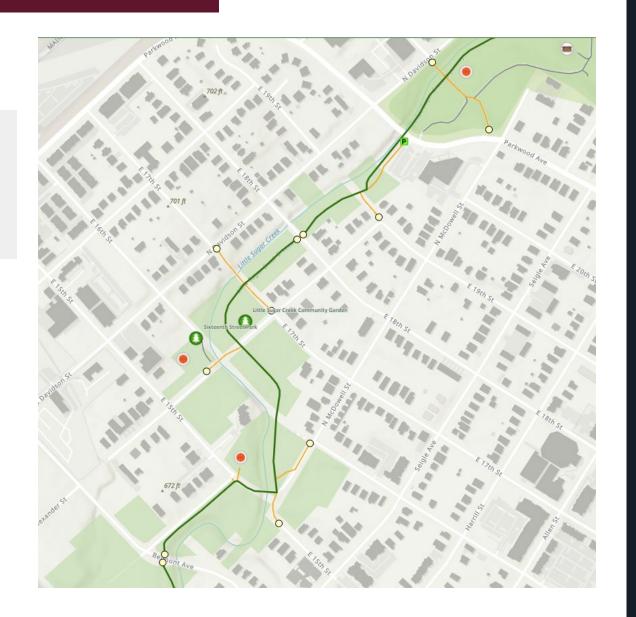
BASED ON 20 MPH DESIGN SPEED, 20 DEGREE LEAN ANGLE


HORIZONTAL CURVES

- Min. curve radius = 75' (100' recommended)
- Special Considerations if minimum can't be met:
 - Advanced warning signage
 - Use solid centerline stripe
 - Curve widening

VERTICAL CURVES

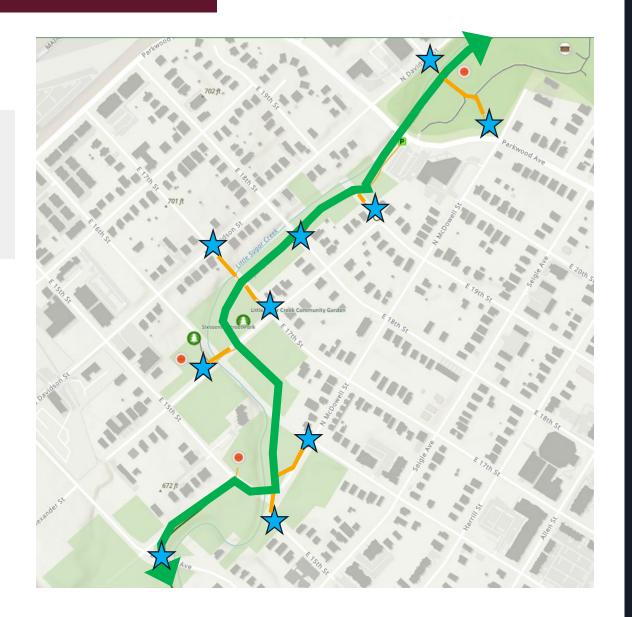
- Curve lengths vary (crest vs sag)
- Sight distance is key



LAND-USE CONTEXT

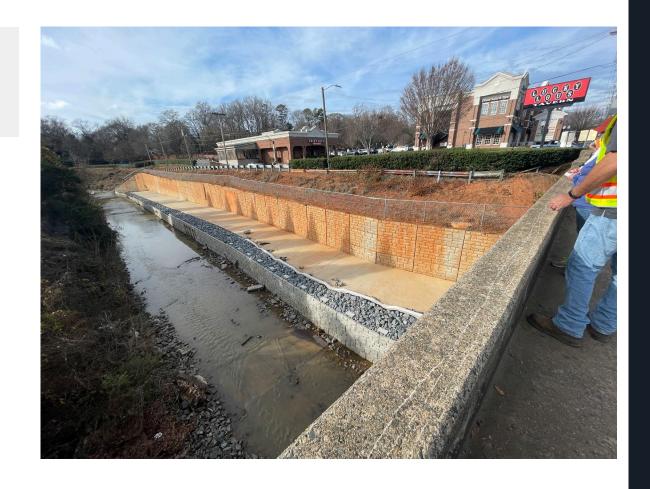
> URBAN

Access



LAND-USE CONTEXT

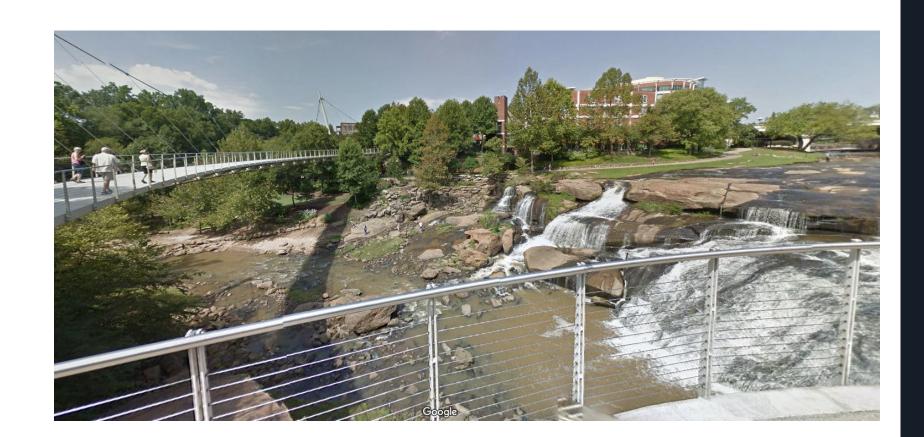
> URBAN


Access

LAND-USE CONTEXT

> CONSTRAINTS

NATURAL SETTING


> VIEWS

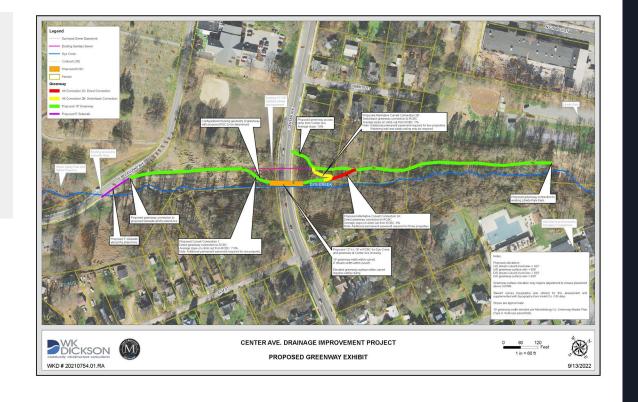
NATURAL SETTING

> VIEWS

STREET NETWORK INTERACTIONS

> EVALUATE ALL CROSSINGS

- Street classification
- Topographic conditions
- Existing bridge or culvert

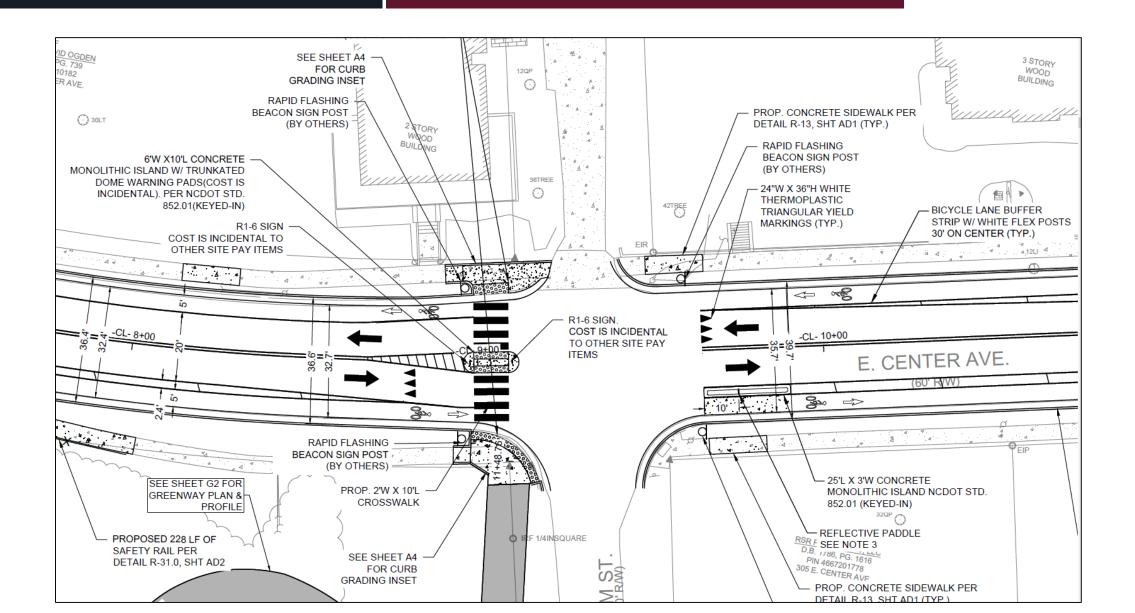


STREET NETWORK INTERACTIONS

> GRADE SEPARATED CROSSINGS

- Require proper topography
- Investigate prior or during design phase

STREET NETWORK INTERACTIONS


> AT GRADE CROSSINGS

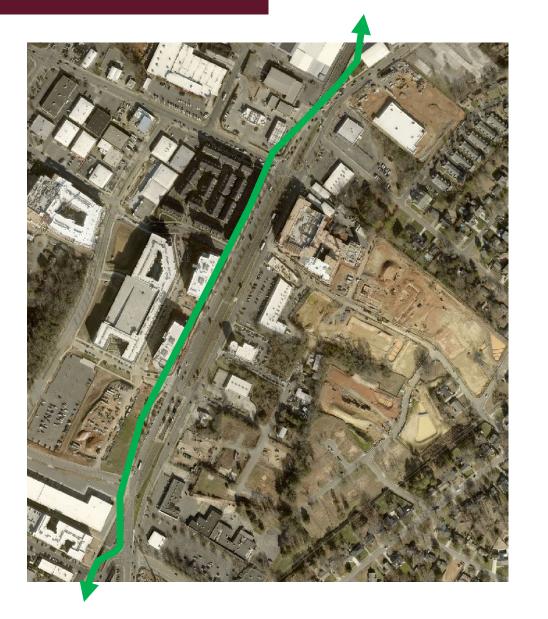
- Slow vehicle speeds
- Increase pedestrian visibility
- Shorten crossing distance
- Signalization
- Street improvements within greenway trail scope

STREET NETWORK INTERACTIONS

USER GROUPS + VOLUMES

> VOLUME/USE PROJECTIONS

- Employment
- Residential uses
- Future development



USER GROUPS + VOLUMES

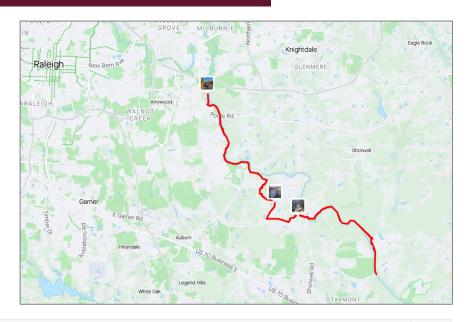
> VOLUME/USE PROJECTIONS

- Employment
- Residential uses
- Future development

USER GROUPS + VOLUMES

> HIGHER VOLUME CONSIDERATIONS

- Width
- Striping
- Sight distance
- Signage



BICYCLE CONSIDERATIONS

> ADDITIONAL BICYCLE USE DRIVERS

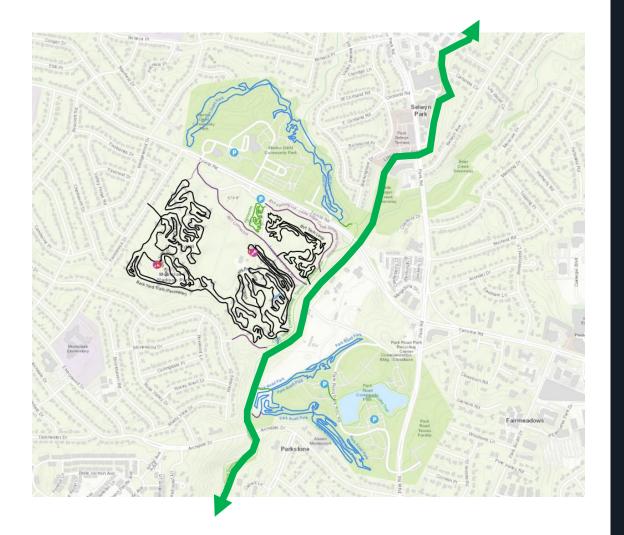
- Long distance rides
- Connectivity to bikeway network
- Connectivity to mountain bike trails

will washam - Ride

2:30 PM on Thursday, October 27, 2022 · Raleigh, North Carolina

Neuse never disappoints

Add a description


26.57 mi	1:56:35 Moving Time	654 ft Elevation	47 Relative Effort	
81 W Estimated Avg Power	567 kJ Energy Output			
Speed Elapsed Time	Avg 13.7 mi/h 1:59:24	Max 24.3 mi/h	\$	Show More

BICYCLE CONSIDERATIONS

> ADDITIONAL BICYCLE USE DRIVERS

- Long distance rides
- Connectivity to bikeway network
- Connectivity to mountain bike trails

BICYCLE CONSIDERATIONS

> ADDITIONAL BICYCLE USE DRIVERS

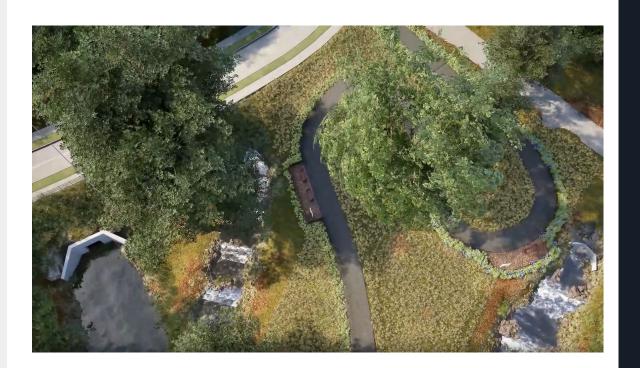
- Long distance rides
- Connectivity to bikeway network
- Connectivity to mountain bike trails

BICYCLE CONSIDERATIONS

→ GRADE

- Uphill effort
- Downhill speed
 - 18mph bicycle design speed on grade up to +/-2% (AASHTO)
 - Turning radius considerations with increased speed (20* lean angle per AASHTO)
 - Tradeoffs
 - Widen path in curve?
 - Widen path in general?
 - Materials for braking traction
 - > Bridge materials

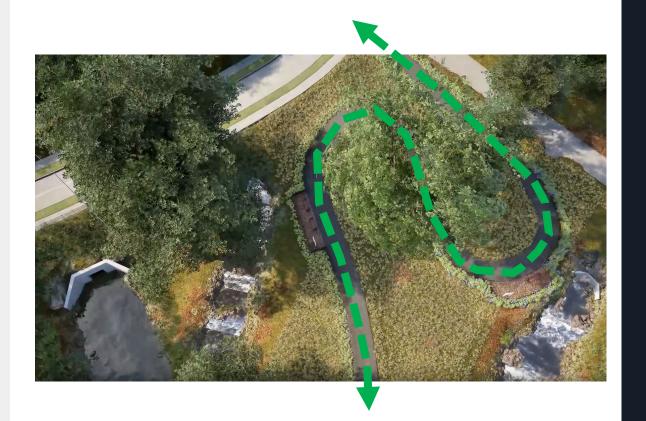
Table 5-2. Minimum Radii for Horizontal Curves on Paved, Shared Use Paths at 20-Degree Lean Angle


U.S. Customary		Metric		
Design Speed (mph)	Minimum Radius (ft)	Design Speed (km/h)	Minimum Radius (m)	
12	27	19	8	
14	36	23	11	
16	47	26	15	
18	60	29	18	
20	74	32	22	
25	115	40	35	
30	166	48	50	

BICYCLE CONSIDERATIONS

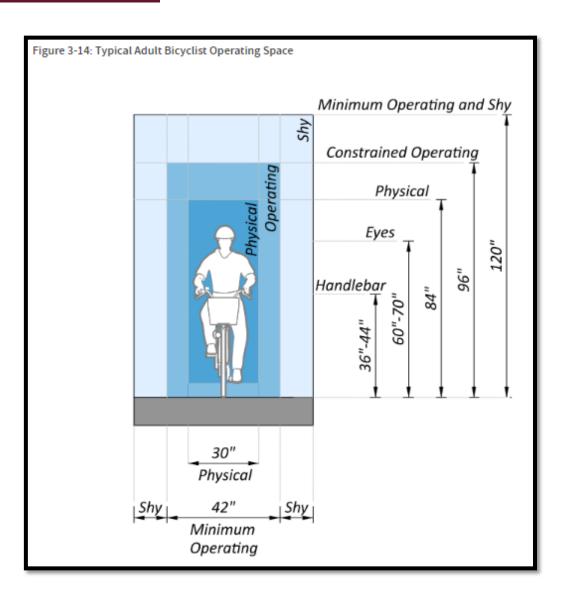
GRADE

- Uphill effort
- Downhill speed
 - 18mph bicycle design speed on grade up to +/-2% (AASHTO)
 - Turning radius considerations with increased speed (20* lean angle per AASHTO)
 - > Tradeoffs
 - Widen path in curve?
 - Widen path in general?
 - Materials for braking traction
 - › Bridge materials



BICYCLE CONSIDERATIONS

GRADE


- Uphill effort
- Downhill speed
 - 18mph bicycle design speed on grade up to +/-2% (AASHTO)
 - Turning radius considerations with increased speed (20* lean angle per AASHTO)
 - > Tradeoffs
 - Widen path in curve?
 - Widen path in general?
 - Materials for braking traction
 - > Bridge materials

EFFECTIVE WIDTH

- Vertical Elements
 - Other bicycles 1'
 - Intermittent (tree, planter) 1'
 - Continuous (fence, railing) 2'
 - Vertical curb 1'

EFFECTIVE WIDTH

- > Vertical Elements
 - Other bicycles 1'
 - Intermittent (tree, planter) 1'
 - Continuous (fence, railing) 2'
 - Vertical curb 1'

EFFECTIVE WIDTH

- > Vertical Elements
 - Other bicycles 1'
 - Intermittent (tree, planter) 1'
 - Continuous (fence, railing) 2'
 - Vertical curb 1'

STRUCTURES – PEDESTRIAN BRIDGES

- Longer Single Spans over Jurisdictional Streams
- > Clear Width
- > Loading Requirements (H-5 vs. H-10)
 - Maintenance / Emergency Vehicle Access
- Pre-Fabricated Truss vs. Low-Water Reinforced Concrete (Flood Model Considerations)
- Approach Rails
- Materials Selection
 - Weathering Steel
 - Painted Steel
 - Fiberglass

STRUCTURES – BOARDWALK

- Shorter Spans (10' and 20') over wetlands, tributaries, to traverse steep side slopes
- > Clear Width
- Loading Requirements (H-5 vs. H-10)
- Railing Height (Toe Rail vs. Safety Rail)
- Approach Rails
- Materials Selection
 - Foundations (Timber Pile vs. Micro-Pile)
 - Decking (Timber vs. Cast-In-Place Concrete vs. Pre-Cast Concrete)
 - Railing (Timber vs. Metal)

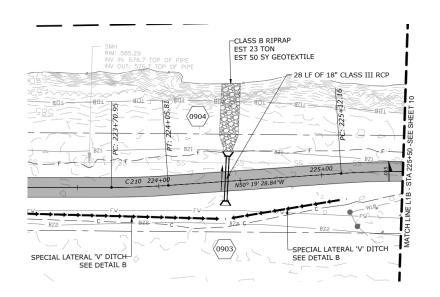
STRUCTURES - RETAINING WALL

WALL TYPES

- Segmental Block Gravity Wall
- Cast-In-Place Gravity Wall
- Mechanically Stabilized Earth (MSE) Wall
- > Soil Nail Wall

WALL HEIGHT

- Special Inspections typically required for Walls greater than 4' high
- Higher the wall, more restrictions as to wall types (especially within NCDOT right-of-way)



DRAINAGE

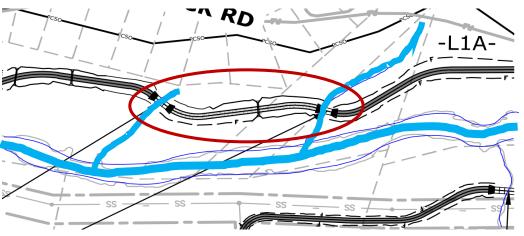
McAdams

- > Roadway and greenway drainage are not the same
- Matching existing conditions
 - Concentrated flow vs. sheet flow
 - Driver of cross slope direction
- Areas designed to flood
- Pipe material selection

MAINTENANCE + DURABILITY

- Constructed Shoulders (compacted)
- Mow-able Shoulders
- > Avoid small strips of grass between features (i.e. face of wall, back of curb)
- > Inclusion of geotextile separator fabric

PAVEMENT


ASPHALT

- Paired with aggregate base + stabilization method
- Paving equipment is often limiting (width, vertical clearance)

CONCRETE

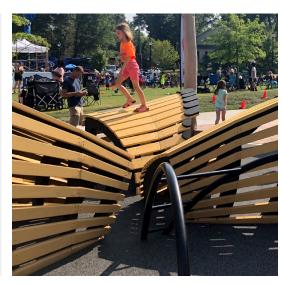
- Can be reinforced, poured on compacted subgrade or aggregate base
- Portability (buggy, pump, etc.)
- Best for isolated sections
- > Durability

UTILITY EASEMENTS

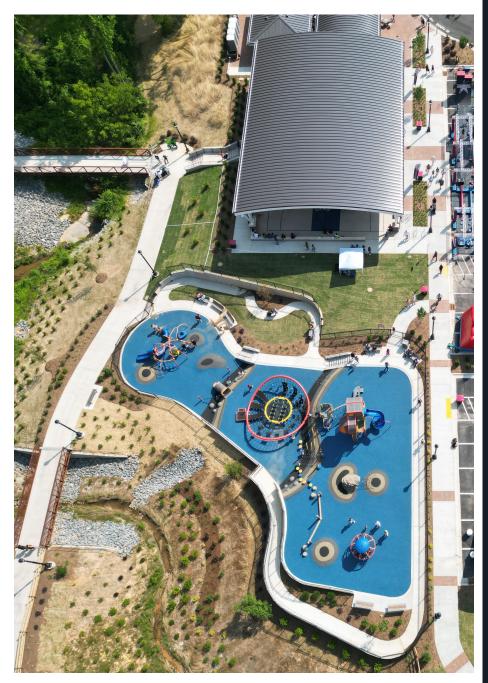
TRANSMISSION

- No structures allowed
- > Proposed slope limitations (4:1 max.)
- Clear zones around towers/poles

GAS


- No structures allowed
- > Proposed slope limitations (4:1 max.)
- > Limit cut above underground lines

SEWER


- > Limited use of structures allowed
- > Check use language
- Be realistic about widths

PLACEMAKING

- Site Context
- > Special Site Features
- > Amenities
- > Public Art
- Connectivity

ENVIRONMENTAL FEATURES

McAdams

- > Vegetation
- Streams
- > Stormwater
- Topography
- Geology

MATERIALS

- Durability
- Maintenance
- > Constructability
- Aesthetics

BRINGING YOUR VISION TO REALITY

THANK YOU! QUESTIONS?

WHATS NEXT?

> BREAK UNTIL 11:00

> MEET BACK IN LOWRANCE ROOM (HERE)
FOR SITE WALK (11:00 TO NOON)

